Lesson Overview Collision Theory

Objective: The student will be able to describe the two factors which determine the reality of a reaction and its relationship to potential energy.

Collision State Theory

How do chemicals react?

Collision Theory

Low concentration = Few collisions

High concentration = More collisions

Molecules collide with one another causing bonds to break allowing for new products.

Criteria that must be met:

- 1. Collisions must have enough energy to activate the reaction.
- 2. Must collide in the correct and appropriate orientation.

Rates of Reactions

The following affect the rate of the reaction by speeding the reaction up:

- 1. Increased concentration of solvent
- 2. Increase collisions (stirring, shaking, adding heat)
- 3. Increase surface area (crush the substance)

Potential Energy Diagrams

A potential energy diagram plots the changes in potential energy during a chemical reaction.

The following vocabulary list is comprised of essential words for understanding potential energy diagrams:

- (1) potential energy
- (2) activated complex
- (3) energy of reactants, products, and activated complex
- (4) enthalpy ΔH
- (5) activation energy
- (6) catalyzed reaction
- (7) uncatalyzed reaction
- (8) endothermic and exothermic

PE Diagram for an uncatalyzed reaction

Reaction Coordination $(R \rightarrow P)$

Reaction Coordination (R→P)

PE Diagrams Conclusions

The relationship between potential energy and kinetic energy.

Essential Questions:

- (1) How do catalysts increase the rate of a chemical reaction?
- (2) What purpose do PE diagrams serve? How will we determine values numerically?