LeChatelier's Principle

Objective: The student will be able to apply LeChatelier's Principle to describe shifts in the equilibrium position.

Le Chatelier's Principle

Introduces a "stress" to a system in equilibrium.

Discussed as a shift in the reaction:

- Shift left = increase [reactants]
- shift right = increase [products]

Examples of Stress

- 1. Add a substance to a side: shift to other side
- 2. Remove a substance: shift to same side
- 3. Increase pressure: shift to side with fewer moles
- 4. Decrease pressure: shift to side with more moles
- 5. Increase temperature: shifts to right

Page 2

Example Problems

Let's use this key to answer these questions about the following system:

- A) increases; B) decreases; C) no change;
- D) cannot determine; E) shifts right; F) shifts left

$$2 A + 3 B \le 5 C + 2 D \Delta H = -55.4 kJ T = 879 K$$

- 1. Increasing the concentration of A would have what effect on the value of K_C ?
- 2. Decreasing the temperature would have what effect on the value of K_C ?
- 3. Putting a solid catalyst (promoter) into the reaction vessel would have what effect on the [C]?

Example Problems

Let's use this key to answer these questions about the following system:

- A) increases; B) decreases; C) no change;
- D) cannot determine; E) shifts right; F) shifts left

$$2 A + 3 B \le 5 C + 2 D \Delta H = 55.4 kJ T = 879 K$$

- 4. Removing some reactant B from the reaction would have what effect on [D]?
- 5. Increasing the pressure on the reaction would have what effect on the position of the equilibrium?