Lesson Overview Acid-Base Models

Objective: The student will be able to (1) describe the Three Models of Acid-Base Theory, (2) classify strong and weak acids and bases, (3) discuss the extent of an acid-base reaction.

Properties of Acids and Bases

electrolytes

pH < 7

pOH > 7

 $\uparrow [H^+] \downarrow [OH^-]$

sour taste

Turns litmus paper red

react with bases to neutralize

react with metals to form H₂

pH > 7

pOH < 7

bitter taste

 $\Psi[H^+] \uparrow [OH^-]$

slippery feeling

Turns litmus paper blue

react with acids to neutralize

do not react with metals

Acid-Base Model #1: Arrhenius Definition

Acids produce H₃O⁺

Bases produce OH-

most restictive of the definitions

Acid-Base Model #2: Bronsted-Lowry Definition

Significance of the Bronsted-Lowry Definition

$$H_2C_2O_4 + H_2O \leftarrow H_3O^+ + HC_2O_4^{-1}$$

Acid-Base strength can be determined numerically by using tabular values. (Explain.)

Problem

What is the conjugate acid when aqueous solutions of ammonia and hydrofluoric acid are mixed?

Acid-Base Model #3: Lewis Definition (G.N. Lewis)

Discusses the transfer of electrons

Problem

When BF₃ and NH₃ react, which is the Lewis acid?

Relative Strength of Acids and Bases

1	Strong	Weak
Acids	hydrohalic	hydrohalic
		sans H-O
	oxoacids	oxoacids
Bases	R-OH and R-O where R is a IA or IIA metal	Electron-rich nitrogen with lone pair

Derivation of the Strength of Oxoacids

Deals with electron withdrawing and electronegativity

Electronegativity increases, acidity increases

The Extent of Dissocation for Strong Acids

Strong acid: $HA(g \text{ or } l) + H_2O(l) \longrightarrow H_2O^+(aq) + A^-(aq)$

The Extent of Dissocation for Weak Acids

Weak acid: $HA(aq) + H_2O(l) \longrightarrow H_2O^+(aq) + A^-(aq)$

Acid Strength (Ka) and the Meaning of K

$$HNO_{3(aq)} + H_2O_{(1)} \rightarrow H_3O^+_{(aq)} + NO_3^-_{(aq)}$$

$$HCN_{(aq)} + H_2O_{(l)} \leftarrow \rightarrow H_3O^+_{(aq)} + CN^-_{(aq)}$$

derivation of K_a , strength / $[H_3O^+]$ / K_a relationship

General Characteristics of Acid-Base Solution Equilibrium

The acidity of a solution is based on the relationship between the $[H_3O^+]$ and the $[OH^-]$. When:

$[H_3O^+]$	[OH ⁻]	acidic
$[H_3O^+]$	[OH ⁻]	neutral
$[H_3O^+]$	[OH ⁻]	basic

What is K_w?

Final point: Rxns proceed in the direction of SA + SB → WA + WB (stronger) (weaker)

Example: Extent of a Reaction

Consider the following system:

hydrofluoric acid is mixed with water

What is the extent of the reaction? (i.e. Which side of the reaction will be favored, products or reactants?)

Practice

Consider these systems in equilbrium, individually:

- (a) the dihydrogen phosphate ion is mixed with aqueous ammonia
- (b) the bisulfide ion is mixed with water

For each system, what is the extent of the reaction?