Lesson Overview Measuring pH

Objective: The student will be able to discuss the chemical theory behind the laboratory techniques which determine pH.

Measuring pH: Indicators

Weak organic acid (HIn) whose color is different from the color of its conjugate base (In⁻).

Controlling pH: Buffered Solutions

Solutions which contain a weak conjugate acid-base pair resist drastic changes in pH when small amounts of strong acid or strong base are added to them.

Process for Calculating pH of a Buffer

Sample Problem pH of a Buffer

What is the pH of a buffer that is 0.12 M in lactic acid (HC₃H₅O₃) and 0.10 M in sodium lactate (NaC₃O₅O₃)? $K_a = 1.4 \times 10^{-4}$.

Salt Hydrolysis

The literal meaning of hydrolysis is the splitting of water (lysis = spliting, hydro = water). It is the opposite of a neutralization reaction.

Salt Hydrolysis Examples

 $KC_2H_3O_2$ NH_4I Na_2SO_4

 $Fe(NO_3)_3$ $CsClO_4$ $NaHSO_3$

Sample Problem Salt Hydrolysis

What is the pH of a 0.25 M solution of potassium nitrite?