Lesson Overview **Quantum Mechanics**

Objective: The student will be able to define the wave nature of matter and how this definition lead to the location of electrons in an electronic cloud.

Lesson Outline:

- I. The Wave Behavior of Matter
- II. Quantum Mechanics & Atomic Orbitals
- III. Representations of Orbitals
- IV. Quantum Numbers

The Wave Behavior of Matter

Louis de Broglie: Wave-Particle Duality

$$\lambda = \frac{h}{\text{mv}}$$

His ideas were confirmed a dew years later with experiments in X-ray diffraction.

The Heisenberg Uncertainty Principle

The dual nature of matter places a fundamental limitation on how precisely one can know the location and momentum simultaneously.

$$\Delta x \cdot \Delta m \ge \frac{h}{4\pi}$$

Only important when we look at incredibly small matter (subatomic level)

Uncertainty Principle Illustration

Calculate the uncertainty in the position, $\Delta x \cdot \Delta m \ge \frac{h}{4\pi}$ given the following:

mass of e⁻: 9.11x10⁻³¹ kg

avg. speed of e⁻ in H atom: 5x10⁶ m/s (with 1% uncertainty)

Significance of de Broglie & Heisenberg

"De Broglie's hypothesis and Heisenberg's uncertainty principle set the stage for a new and more broadly applicable theory of atomic structure."

- Brown, Lemay, Bursten (12 edition)

Quantum Mechanics & Atomic Orbitals

- Schrödinger and Equation

$$\frac{\delta^2 \Psi}{\delta x^2} + \frac{\delta^2 \Psi}{\delta y^2} + \frac{\delta^2 \Psi}{\delta z^2} + \frac{8\pi^2 m}{h^2} (E - V) \Psi = 0$$

- incorporates both the wave-like and particle-like behaviors of the electron.
- treated the electron in Hydrogen as a plucked guitar string.

An electron is like a plucked guitar string.

The Schrödinger Equation

Solving the equation leads to a series of mathematical functions called wave functions that describe the

electron in the atom.

The actual solution of the value ψ has no significance, it is the square of the wave function, ψ^2 , that has meaning.

 ψ^2 represents the probability that the electron will be found in that location

Low dot density, low ψ^2 value, low probability of finding electron in this region

High dot density, high ψ^2 value, high probablility of finding electron in this region

Orbitals and their Shapes

The solution to Schrödinger's equation for the hydrogen atom yields a set of wave functions called orbitals.

Orbital Diagrams

n = 1 shell has one orbital

n = 2 shell has two subshells composed of four orbitals

n = 3 shell has three subshells composed of nine orbitals

Representations of Orbitals

How do these orbitals change based on the energy level?

Radial Probability (function) Density

Three trends:

- 1. The # of peaks increases with increasing "n", the outermost peak being larger than the inner ones.
- 2. The # of nodes increases with increasing "n".
- 3. The electron density becomes more spread out with increasing "n".

Rules for Filling Orbital Diagrams

<u>Aufbau Principal:</u> Electrons occupy the **lowest energy level** possible (are as close to the nucleus as possible)

<u>Hund's Rule</u>: Electrons will occupy each orbital with the same spin (direction) before occupying an orbital with the opposite spin (direction)

<u>Pauli Exclusion Principal</u>: No two electrons can have the same quantum number. (They must be traveling in opposite directions if they are in the same orbital.

Quantum Numbers

Summary of Quantum Numbers of Electrons in Atoms

Name	Symbol	Permitted Values	Property
principal	n	positive integers (1,2,3,)	orbital energy (size)
angular momentum	1	integers from 0 to n-1	orbital shape (The <i>t</i> values 0, 1, 2, and 3 correspond to s, p, d, and f orbitals, respectively.)
magnetic	m_l	integers from -1 to 0 to +1	orbital orientation
spin	m_s	+1/2 or -1/2	direction of e-spin

Example 1

What is the set of quantum numbers for the last electron in a neutral carbon atom?

Example 2

What is the set of quantum numbers for the last electron in arsenic?

Note: save time. Only draw the sublevel where the electron exists.

