Lesson Overview Intermolecular Forces

Objective: The student will be able to identify intermolecular forces based on lewis structures.

- I. Intra vs. Intermolecular Forces
 - A. Definition of forces
 - B. Comparison and contrast
- II. Intermolecular Forces
 - A. Explanation of Types of IMFs
 - B. Determining IMFs in situ
 - C. Applications

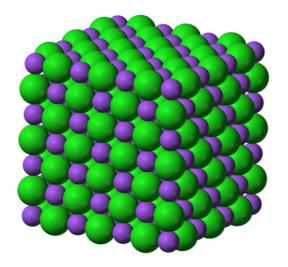
Intermolecular Forces

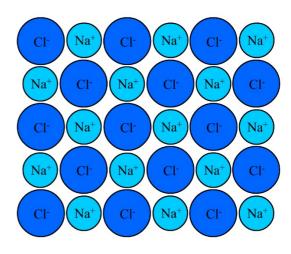
Definition: the forces that hold molecules together.

Intra- vs. intermolecular forces:

- Intra "inward"
 - Examples: ionic, covalent, metallic
- Inter "outward"
 - Examples: Hydrogen bonding, dipole-dipole, van der Waals.

Table 12.2 Comparison of Bonding and Nonbonding (Intermolecular) Forces


Force	Model	Basis of Attraction	Energy (kJ/mol)	Example
Bonding				
Ionic		Cation-anion	400-4000	NaCl
Covalent	•••	Nuclei-shared e pair	150-1100	н—н
Metallic	++++	Cations—delocalized electrons	75–1000	Fe


Intermolecular Forces

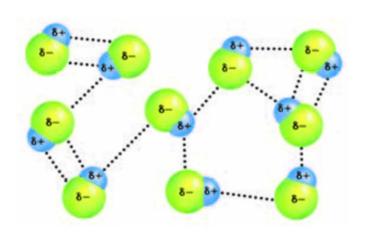
IMFs dominate covalent molecules

Na—Cl:

Intermolecular forces are weaker than intramolecular forces.

Determining Intermolecular Forces

non-polar + non-polar = van der Waals (london dispersion)

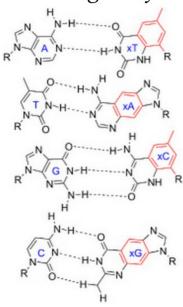

polar + polar = dipole - dipole

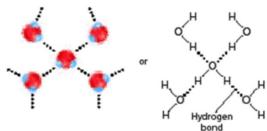
• if Hydrogen is bound to F, O, N then H-interaction

polar + non-polar = dipole-induced dipole

Dipole - Dipole Forces

- Permanent dipoles
- Attraction between polar molecules
- Stronger than London Dispersion

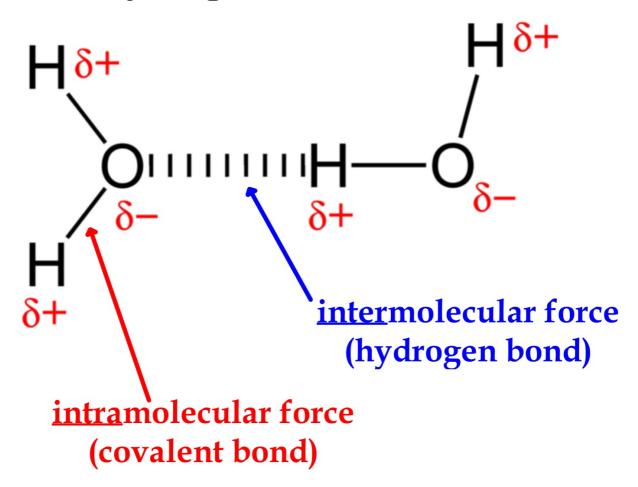

What is a dipole?


Hydrogen bonding

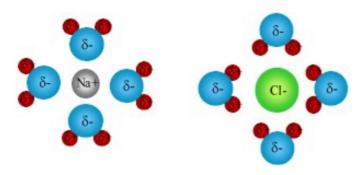
Occurs when hydrogen is bonded to fluorine, oxygen, nitrogen, and sulfur.

FON(S)

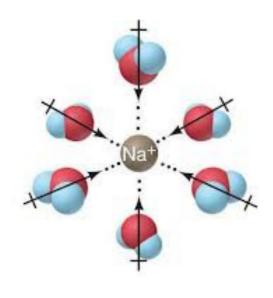
The strongest of the IMFs



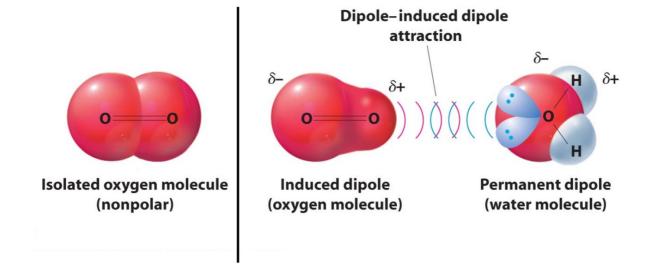
- Has many applications in biological systems.
- Cohesion and adhesion
- Protein stabilization


It is not really a bond. It is an interaction between molecules.

Hydrogen interactions


Ion - Dipole Forces

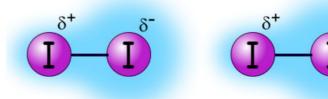
Occurs when an ionic substance is dissolved in a polar substance.


Examples:

- 1. NaCl in H₂O
- 2. MgCl₂ in NH₃
- 3. KBr in TeBr₄

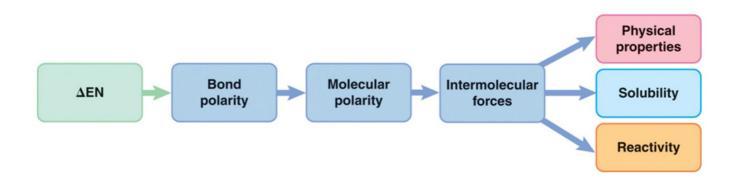
Induced Dipole Interactions

Two varieties: (1) dipole - induced dipole (2) ion - induced dipole

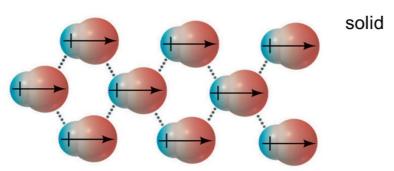


What would an ion-induced dipole interaction look like?

London Dispersion Forces (van der waals forces)


Weak attraction between the opposite ends of different molecules

Weakest of all IMFs


Occurs between all molecules

The Significance of IMFs

Map indicating the connection between electronegativity and the chemical and physical characteristics of substances.

The Significance of IMFs

Intermolecular Forces dictate properties on the macroscopic level.

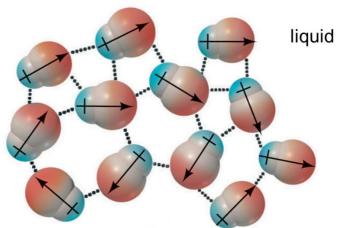
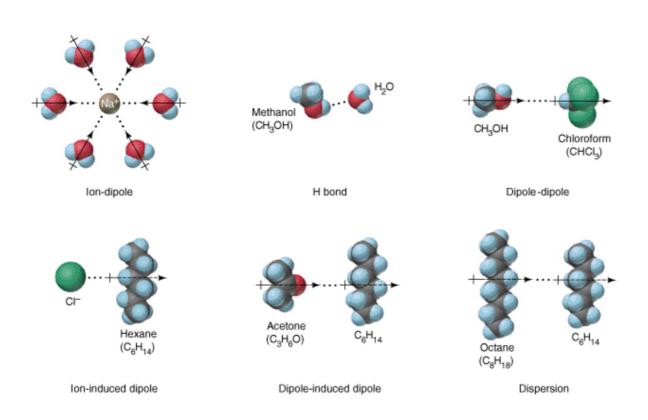



Table 12.2 Comparison of Bonding and Nonbonding (Intermolecular) Forces

Nonbonding (Intermolecular)							
Ion-dipole	•••••••	Ion charge— dipole charge	40-600	Na+····O			
H bond	δ ⁻ δ ⁺ δ ⁻ -A−H·····:B−	Polar bond to H- dipole charge (high EN of N, O, F	10–40	:Ö−H····;Ö−H 			
Dipole-dipole		Dipole charges	5-25	I-CII-CI			
Ion-induced dipole	••••••	Ion charge— polarizable e cloud	3–15	Fe ²⁺ ····O ₂			
Dipole-induced dipole		Dipole charge— polarizable e cloud	2–10	H—CI····CI—CI			
Dispersion (London)		Polarizable e clouds	0.05-40	F—F····F—F			

Summary of Intermolecular Forces

