Lesson Overview Advanced Bonding Theories

Objective: The student will be able to demonstrate how Molecular Orbital (MO) and Crystal Field (CF) Theories adjust for the failings of Valence-Bond (VB) and Valence-Shell Electron-Pair Repulsion (VSEPR) Theories.

Molecular Orbital Theory

What question does MO theory seek to answer?

VB: bond order, resonance

VSEPR: shape of molecule

Molecular Orbital Theory Applications

Use to predict the existence and/or stability of a substance through a bond order calculation.

Molecular Orbital Examples

Determine whether these two molecules exist based on a BO calculation:

Bonding and Anti-bonding

MO diagrams* introducing p orbitals

O₂: Valence Bond Diagram

para & diamagnetism

Paramagnetism vs. Diamagnetism

Weigh sample in absence of a magnetic field

A diamagnetic sample appears to weigh less in magnetic field (weak effect)

A paramagnetic sample appears to weigh more in magnetic field

Due to the attraction or repulsion of the magnetic field

The paramagnetic nature of O₂

Comment: VB theory vs. MO theory.

	Large 2s-2p interaction				Small 2s-2p interaction			
		B ₂	C ₂	N ₂		O ₂	F ₂	Ne ₂
	σ_{2p}^*				σ_{2p}^*			11
	π_{2p}^*				π_{2p}^*	1 1	11 11	11 11
	σ_{2p}			11	π_{2p}	11 11	11 11	11 11
	π_{2p}	1 1	11 11	11 11	σ_{2p}	11	11	11
	σ_{2s}^*	11	11	11	σ_{2s}^*	11	11	11
	σ_{2s}	11	11	11	σ_{2s}	11	11	11
Bond order		1	2	3		2	1	0
Bond enthalpy (kJ/mol)		290 1.59	620 1.31	941 1.10		495 1.21	155 1.43	_
Bond length (Å) Magnetic behavior		Paramagnetic	Diamagnetic	Diamagnetic		Paramagnetic	Diamagnetic	_

Crystal Field Theory

A model for bonding in transition-metal complexes which accounts for their magnetic properties and colors.

8B 4B 1B 5B/ 6B 2B 3B. 7B 8 10 11 12 21 22 23 24 25 26 27 28 29 30 \mathbf{V} Ni Cu Zn Sc Ti Fe Co Cr Mn 39 40 41 42 43 44 45 46 47 48 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd 78 79 71 72 73 74 75 76 77 80 Hf W Pt Au Lu Ta Re Os Ir Hg

VB & MO Theory fall short in their explanations

The Color Wheel & Color Theory (it's not just for art class)

An object will have a particular color because (1) it reflects light of that color, or (2) it absorbs light of the complementary color.

Metal-Ligand Interactions

Complexes are a product of Lewis acid-base interactions. The metal ion attracts ligands, which donate electrons to an empty orbital.

The interactions can be metal - ionic ligand or a metal - neutral ligand, meaning the IMFs change depending on the ligand.

Metal-Ligand Interactions

Although the metal ligand is attracted to the ligand's electrons, the metal ion's d electrons are repulsed by the

ligands.

Octahedral complexes: The electron (ligand) group geometry is also an important factor.

CF Theory & Color

The energy gap (Δ) between e and t₂ orbital sets is the same order of magnitude as the energy of a photon of visible light.

An object will have a particular color because (1) it reflects light of that color, or (2) it absorbs light of the complementary color.

The Spectrochemical Series

How are the exact colors determined? Color depends on both the metal and ligand present in the complex.

I ⁻ < Cl ⁻ < F ⁻ < OH ⁻ < H ₂ O < SCN ⁻ < NH ₃ < en < NO ₂ ⁻ < CN ⁻ < CO						
WEAKER FIELD	STRONGER FIELD					
SMALLER A	LARGER A					
LONGER λ	SHORTER λ					

The ligand will determine the energy gap (Δ).

Example of Changing Color

Electron Configurations in Octahedral Complexes

What happens if we add a fourth electron to the Cr system? (from previous slide)

The Spectrochemical Series

Weaker field ligands impart a smaller difference between the "e" and "t₂" orbital sets

Opposite is true for strong field ligands!

Tetrahedral and Square-Planar Complexes

