Lesson Overview Phase Diagrams

Objective: The student will be able to qualitatively and quantitatively describe the processes of phase changes.

PLASMA Ionized Gas (>100,000°C) Charged particles, ions and electrons, interacting GAS Steam (>100°C) Molecules moving randomly and expanding LIQUID Water (>0°C) Molecules moving freely **SOLID** Ice (<0°C) Molecules fixed in lattice

States of Matter

Postulates of Kinetic Molecular Theory

- 1. All gas molecules are considered to be "point" masses. (Mass)
- 2. The average kinetic energy of any gas is a function of its absolute temperature. (Energy)
- 3. Gas particles move in a rapid, random, straight-line motion. (Motion)
- 4. The volume of the gas molecules are negligible compared to the volume in which they are contained. (Volume)
- 5. Attractive and repulsive forces between gas molecules are negligible. (Collisions)

The Four Fundamental Phases

Energy of particles

Essential Question: What is happening on the molecular level? (Phase changes, IMFs)

States of Matter

Properties of Solids, Liquids & Gases

· All particles are in constant motion, have a density

Solids		Liquids	Gases
 Particles very 	close together o	Particles loosely held	 Particles very far apart
 Highest densit 	ty	together	 Least dense
 Lowest kinetic 	energy	Moderate density	 Most kinetic energy
 Least amount 	t of motion o	Moderate kinetic energy	 High amount of motion
 Definite shape 	e & volume o	Some motion	 No definite shape or volume
 Not very affect 	cted by	Conforms to shape of	 No organization
environmento	al conditions	container, definite volume	o Fluid
(i.e. physical o	changes) a	Fixed volume	
	0	Expand & vaporize when	
	1007	heated	
	0	Fluid (less than gases)	

Phase Diagrams

Comparison of Phase Diagrams

The dominating entity between states of matter are the Intermolecular Forces

Properties of Liquids viscosity, surface tension, capillary action

Viscosity is the resistance to flow.

capillary action

surface tension

Vapor Pressure Concept, V.P. vs IMF, dynam. equilibrium

Change of State Problems

Energy of particles

Essential Question: What is happening on the molecular level? (Phase changes, IMFs)

Equations and Variables

Q = mCΔT	$Q = mH_f$	$Q = mH_v$
Q = heat energy (J)	H_f = heat of fusion (J/g)	H _v = Heat of vaporization
m = mass (g)		
C = specific heat or heat capacity (J/g·°C)		
ΔT = change in T (°C)		