Complexation Reactions

Review terms: ligands, coordination numbers

Metals ions which often form complexes:

1. Fe³⁺

2. silver

3. zinc hydroxide

4. aluminum hydroxide

5. copper(II)

Page 2

Complexes with Iron(III)

Case study:

Reactants: iron(III) chloride with ammonium thiocyanate

How do we know it's not a double replacement reaction?

How do I actually write the reaction? What does it look like?

Page 3

Silver ions/Zinc hydroxide/Aluminum hydroxide special note about coordination numbers for Al

copper(II) solutions and concentration

Page 4

Summary of Complexation reactions

1. complexation of a soluble salt

e.g. a concentrated solution of ammonia is added to a solution of copper(II) chloride

$$4 \text{ NH}_3 + \text{Cu}^{2+} \rightarrow [\text{Cu}(\text{NH}_3)_4]^{2+}$$

2. complexation of an insoluble salt e.g. excess concentrated potassium hydroxide solution is added to a precipitate of zinc hydroxide

$$2 \text{ OH}^- + \text{Zn}(\text{OH})_2 \rightarrow [\text{Zn}(\text{OH})_4]^{2-}$$

 $2 H^{+} + Cl^{-} + [Ag(NH_{3})_{2}]^{+} \rightarrow AgCl + 2 NH_{4}^{+}$

3. destruction of a complex by acid/base neutralization e.g. dilute hydrochloric acid is added to a solution of

diamminesilver nitrate

Page 6

Example #1

excess dilute nitric acid is added to a solution of tetramminecadmium(II) ion

$$4H^{+}_{(aq)} + [Cd(NH_3)_4]^{2+} \rightarrow Cd^{2+}_{(aq)} + 4NH_4^{+}_{(aq)}$$

Page 7

Example #2

pellets of aluminum metal are added to a solution containing an excess of sodium hydroxide

$$Al + 4 OH^- \rightarrow [Al(OH)_4]^-$$

Practice #1

an excess of ammonia gas is bubbled through a solution saturated with silver chloride

$$2 \text{ NH}_3 + \text{AgCl} \rightarrow [\text{Ag(NH}_3)_2]^+ + \text{Cl}^-$$

Page 8

Warm-Up

a concentrated solution of ammonia is added to a suspension of zinc hydroxide

$$NH_3 + Z_n(OH)_2 CS) \longrightarrow \left[Z_n(NH_3)_4\right]^{2+2OH}$$

Practice #2

a solution of ammonium thiocyanate is added to a solution of iron(III) chloride

Page 11

Group Practice

AP Reaction Predictions Problem Set

Use years 1968, 1969, & 1970. Special notes:

There are 3 complexation reactions. Find them!

There are 3 you can't do just yet:

1.1968-C

Page 10

- 2. 1969-E
- 3. 1970-G

Page 13

Fage 14

Oxidizers

[oxidizers will become reduced]

+7

 MnO_4 - (in acid) $\rightarrow Mn^{2+}$

 MnO_4 - (in neutral or basic) $\rightarrow MnO_2$

 MnO_2 (in acid) $\rightarrow Mn^{2+}$

 $Cr_2O_7^{2-}$ (in acid) $\rightarrow Cr^{3+}$

 HNO_3 (conc.) $\rightarrow NO_2$

 HNO_3 (dilute) $\rightarrow NO$

 H_2SO_4 (hot, concentrated) $\rightarrow SO_2$

[if not hot and conc., this acts like HCl or other normal acids] metal cations → lower charge cations or (rarely) free metals

free halogens → halide ions

Page 15

Reducers

[reducers will become oxidized]

halide ions → free halogens

free metals → metal cations

$$SO_3^{2-}$$
 (or SO_2) $\to SO_4^{2-}$

 NO_2 $\rightarrow NO_3$

free halogens (dil. basic) \rightarrow hypohalite ions [like XO] free halogens (conc. basic) \rightarrow halate ions [like XO₃-] metal cations \rightarrow higher charge cations

Page 16

How to spot REDOX reactions OILRIG

aqueous solutions of silver nitrate and ferrous chlorate are mixed

Page 17

Example #1

solutions of tin(II) chloride and iron(III) chloride are mixed

$$S_n^{2+}$$
 + F_e^{3+} \longrightarrow S_n^{4+} + F_c^{2+}

Example #2

powdered iron is added to a solution of iron(III)

$$\frac{11\text{fate}}{f_{e(s)} + f_{e}(394)_{3}} \rightarrow F_{e}^{2+} + SO_{4}^{2+}$$

$$F_{e(s)} + F_{e}^{3+} \rightarrow 2F_{e}^{2+}$$

Page 18

Page 19

Example #3

a solution containing tin(II) ions is added to acidified potassium dichromate solution

Example #4

What about this hot and concentrated business?

" H_2SO_4 (hot, concentrated) $\rightarrow SO_2$ [if not hot and conc., this acts like HCl or other normal acids]"

Example from 1970 AP test -- "B": solid barium peroxide is added to cold dilute sulfuric acid (or hot and concentrated)

Page 20

A final word about writing the "best" products

solid barium carbonate is added to a 2M solution of hydrochloric acid

$$BaCO_{3 (s)} + HCl_{(aq)} \rightarrow BaCl_{2(aq)} + H_2CO_{3(aq)}$$

 $carbonic\ acid\ is\ nothing\ more\ than\ aqueous\ carbon\ dioxide.\ Therefore\ the\ carbonic\ acid\ decomposes\ to\ water\ and\ carbon\ dioxide\ in\ aqueous\ solution.$

Better choice:

$$BaCO_{3 (s)} + HCl_{(aq)} \rightarrow BaCl_{2(aq)} + H_2O_{(l)} + CO_{2(g)}$$

Practice Problems

Work on these problems and we will discuss in about 15 mins 1968-C, 1969-E, and 1970-G $\,$

Page 23